IJP 01961

HPLC determination of azlocillin sodium for stability studies

M. Pujol, V. Girona, J. Prat and J. Cots

Faculty of Pharmacy, Physical-Chemistry Unit, University of Barcelona, Barcelona (Spain)

(Received 21 April 1989) (Modified version received 20 July 1989) (Accepted 27 July 1989)

Key words: Antibiotic; Ureidopenicillin; Azlocillin; Azlocillin sodium; HPLC

Summary

A new method is described for the determination of the broad-spectrum antibiotic Azlocillin sodium by HPLC. This method is useful for stability studies, since it allows the separation of Azlocillin from its degradation products. This has been checked by TLC.

Introduction

Azlocillin sodium (Fig. 1) belongs to a semisynthetic penicillin group with a broad spectrum of antibacterial activity. It is used mainly in hospitals for parenteral administration by slow intravenous injection or by intravenous infusion agains *Pseu*domonas aeruginosa infections (Fu and Neu, 1978; Ellis et al., 1979; Bergan et al., 1982; Sanders, 1983).

Several HPLC methods for the determination of azlocillin sodium have been described in the

Fig. 1. Structure of azlocillin sodium.

literature (Gundert-Remy and De vries, 1979; Hildebrant and Gundert-Remy, 1982; Fasching and Peterson, 1983) but in spite of the advantages of this technique, none of the methods described permits the isolation of azlocillin sodium from its degradation products.

Materials and Methods

Chemicals

Azlocillin sodium was a gift from Bayer S.A. (Barcelona, Spain), and HPLC grade acetonitrile was supplied by SDS S.A. (Barcelona). All other chemicals were of analytical grade and were used as received from the various sources. Double-distilled water was used after filtration in a Millipore system (France) and a second vacuum filtration in a helium atmosphere.

HPLC method

This procedure was carried out in a liquid chromatograph with a constant-flow-rate pump and diode array detector (model HP-1090, Hewlett

Correspondence: M. Pujol, Faculty of Pharmacy, Physical-Chemistry Unit, University of Barcelona, Barcelona, Spain.

Packard, U.S.A.), integrator (model HP-3396D, Hewlett Packard) and Hewlett Packard thin jet printer. Samples were chromatographed using an analytical ODS-Hypersil column (Hewlett Packard) of 10 cm length, 4.6 mm internal diameter and 5 μ m particle size. The mobile phase had a flow rate of 2.0 ml/min under isocratic conditions of 86% 0.008 M borax buffer at ph 7.0 (Tablas Cientifficas Documenta Geigy, 1965) and 14% acetonitrile. The UV detector was set at 210 nm. Each sample was injected in triplicate and the results were averaged to obtain the value of the concentration. Statistical calculations were performed using a Tektronix 4051 (Tectronix, France).

The samples were an azlocillin sodium solution of 200 μ g/ml in water and a series of 20 dilutions of this were prepared. All samples were chromatographed in order to assess the reproducibility and linearity of the method. Linearity of the LC assay was determined by linear regression; peak areas for the antibiotic were plotted on a linear scale vs. drug concentration. Reproducibility of assays was ascertained by analysis of variance.

TLC

TLC was carried out on TLC aluminium plate silica gel 60 F_{254} 20 × 20 cm and layer thickness 0.2 mm (Merck, F.R.G.). The plates were spotted with a Hamilton syringe and the spots left to dry. The plates were then placed in a developing chamber containing the eluent system, a mixture of acetone-acetic acid (45:3, v/v), until the solvent front reached the top of the plate. Once dried, the plates were placed under a Uvaton ultraviolet lamp (Atom) at 254 nm in order to visualize the spots.

The first sample was a 1.5% aqueous solution of azlocillin sodium. This sample was put into a

TABLE 1

Peak areas obtained for different concentrations of azlocillin in water, by the HPLC method

Concentration (g/ml)	Samples (areas)			\overline{x}	Confidence
	1	2	3		interval 95% (±)
0	0	0	0	0	_
10	122 582	126 041	142129	130 250	4212
20	285 423	272 782	291 808	283 337	8 4 2 4
30	433 420	444 748	458 368	445 512	12636
40	576 571	588 808	606 434	590 604	16848
50	771 771	778 398	708 894	753 021	21 060
60	907 436	936 194	929 521	924 383	25 272
70	1088 695	1098 248	1083 031	1089 991	29 484
80	1248 968	1262108	1248 256	1253110	33 696
90	1427 398	1425 508	1413082	1421 996	37 908
100	1581 809	1568 239	1564 454	1571 500	42120
110	1793 235	1764 973	1806 699	1788 302	46 332
120	1916 520	1920 313	1930 549	1922 460	50 544
130	2019718	2014 453	2093 020	2042 397	54756
140	2221 378	2232 800	2247 336	2233 838	58 968
150	2427 714	2439 946	2455106	2440 922	63 180
160	2627 362	2589026	2604 518	2606 968	67 392
170	2787 800	2796 506	2792150	2792152	71 604
180	2944 378	2933 472	2969 653	2949 167	75 816
190	3134 510	3140 973	3125 294	3133 592	80 0 28
200	3304 973	3270 890	3309 437	3295 100	84 240
Coefficient of correlation		1.00 <i>E</i> 0			
Standard deviation		28896			
Prob > F		1.83 <i>E</i> -9			

Fig. 2. Sample chromatogram of azlocillin from HPLC, column ODS-Hypersil (10 cm \times 4.6 mm), 5 μ m particle size. Mobile phase 0.008 M borax buffer at pH 7.0 and acetonitrile (86:14).

thermostat at 50°c to obtain the azlocillin degradation products. A series of samples were removed at random times. All of these were chro-

Fig. 3. Detector response to azlocillin concentration in sample.

matographed by TLC to obtain an R_f table for all of the spots, being simultaneously diluted (1.3:100) and subjected to HPLC in order to determine the T_r values of the different products. After the extraction of each spot with ethanol (Bolós et al., 1977), UV spectra were recorded on a Perkin Elmer 356 dual-wavelength spectrophotometer (Perkin Elmer, U.S.A.) which permits the reading of turbid samples. These samples were filtered using a Millex-HV filter (Millipore, France) and chromatographed by HPLC to obtain a table of T_r values for all spots and their UV spectra (diode array detector HP-1090). Each assay was carried out in duplicate.

Results and Discussion

The retention time for azlocillin was found to be $1.49 \pm 5\%$ min, its chromatogram being shown in Fig. 2. Azlocillin showed a linear detector response throughout the range tested (r = 1.00E0) as demonstrated in Fig. 3 and presented a good standard deviation (σ). All values are listed in Table 1.

Fig. 4. Sample chromatogram of azlocillin from TLC after 5 days at 50 ° C.

Fig. 5. Sample chromatogram of azlocillin from HPLC after 3 days at 50 ° C.

Fig. 4 shows a TL chromatogram of an azlocillin sample after 5 days at 50 °C. More than 10% of the antibiotic had been degraded and three degradation products appeared (A_1-A_3) , all of which have a lower R_f value than that of azlocillin. Fig. 5 shows an HPLC chromatogram of the same sample, three peaks being observed with a lower T_r value than that of azlocillin $(T_{rA_1} = 1.097, T_{rA_2} = 0.618$ and $T_{rA_3} = 0.387)$. When the azlocillin degradation products were extracted from the plates and chromatographed individually by the HPLC method, the same retention times and identical ultraviolet spectra were obtained for A_1-A_3 .

Based upon the above results, it can be stated that the method described herein is suitable for azlocillin stability studies and represents the first step in identification of the degradation products of azlocillin.

References

- Bergan, T., Thorsteinsson, S.B. and Steingrimsson, O., Dose Dependent Pharmacokinetics of azlocillin compared to mezlocillin. *Chemotherapy* 28 (1982) 160–170.
- Bolós, J., Cabré, E., Piera, R. and Vilas, V., Nueva técnica de elución en la cromatografía de capa fina cuantitativa. *Ci*enc. Ind. Farm., 9 (1977) 277–286.
- Ellis, C.J., Geddes, A.M. and Daray, P.E. Mezlocillin and azlocillin: an evaluation of two new β -lactam antibiotics. J. Antimicrob. Chemother., 5 (1979) 517–525.
- Fasching, C.E. and Peterson, L.R., High pressure liquid chromatographic assay of azlocillin and mezlocillin with an anion exchange-extraction technique. J. Liq. Chromatogr., 2 (1983) 3513-2520.
- Fu, K.P. and Neu, H.C., Azlocillin and mezlocillin: new ureido penicillins. Antimicrob. Agents Chemother., 13 (1978) 530-538.
- Gundert-Remy, U. and De Vries, J.X., Determination of the ureidopenicillins azlocillin, mezlocillin and Bay K4999 in plasma by high performance liquid chromatography. Br. J. Clin. Pharmacol., 8 (1979) 589-592.
- Hildebrandt, R. and Gundert-Remy, U., Improved procedure for the determination of the ureidopenicillins azlocillin and mezlocillin in plasma by high-performance liquid chromatography. J. Chromatogr. Biomed. Appl., 228 (1982) 409-412.
- Sanders, C.C., Azlocillin: a new broad spectrum penicillin. J. Antimicrob. Chemother 11 (1983) 21-31.
- Tablas Científicas Documenta Geigy, J.R. Geigy S.A., Basilea (1965) pp. 320-321.